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Abstract:  In this paper, self-starting hybrid block method is proposed for the solution of general second order initial value 
problem of the form �� � ���, �, ��	 directly without reducing it to first order of ODEs. The method was 
developed using Laguerre polynomial as basis function and the method was augmented by the introduction of off-
step points in order to bring zero stability and upgrade the order of consistency of the method. An advantage of the 
derived continuous scheme is that it can produce several outputs of solution at the off-grid points without requiring 
additional interpolation. The schemes compare favourable with existing method. 
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Introduction 
Linear multistep methods constitute a powerful class of 
numerical procedures for showing a second order equation of 
the form 
��� � ���, �, ��	, ���
	 � �� , ��
	 � ��, ��
. ��    (1) 
It has been well known that an analytical solution to this 
equation is of little value because many of such problems 
cannot be solved by analytical approach. In practice, the 
problems are reduced to systems of first order equations and 
any method for first order equations are used to solve them. 
Awoyemi (1999); Fatunla (1998); Lambert (1973) extensively 
discussed that due to dimension of the problem after it has 
been reduced to a system of first order equations, the approach 
waste a lot of computer time and human efforts. 
Some attempts has been made to solve problem (1)directly 
without reduction to a first order systems of equations 
(Brown, 1977; Lambert, 1991) independently proposed a 
method known as Multi derivative to solve second order 
initial value problems type (1) directly. In a recent work of 
Onumanyi et al. (2008), they proposed direct block Adam 
Moulton Method (BAM) and hybrid block.  
Adam Moulton method (IBAM) for accurate approximation 
to ��appearing in equation (1) to be able to solve problem 
(1) directly. The aim of this paper is to demonstrate using 
the present hybrid block method derived to solve equation 
(1) directly and compare its performance with the block 
method scheme proposed in Yahaya (2009). 
 
 

Development of the Method 
We set out by approximating the analysis solution of problem 
(1) with a Laguerre polynomial of the form: 
���	 � ∑ 
��

��� ����	 � ���	         (2) 
where 

������	 = ��1	����� �� !

��� !
��"�����	 

so that 
����	 � 1, ��	��	 � �� � 1	, �$��	 � 	�$ � 4� & 2, �(��	 �
�( & 9�$ & 18� � 6. 
on the partition 
  
 � �, - �� - ⋯ - �� - ���� - ⋯ -
�� � � 
on the integration interval [a, b], with a constant step size h, 
given by 

/ � ���� � ��; 1 � 0,1, … 1 � 1. 
We need to interpolate at least two points to be able to 
approximate (1) and, to make this happen, we proceed by 
arbitrarily selecting an off–step point, ���4,v∈(0,1) in 
(��, ����	 in such a manner that the zero-stability of the main 
method is guaranteed. Then (2) is interpolated at ���6 , 7 � 0, 8 

and its second derivative is collocated at ���6 , 7 � 0,
�

9
, �
$
, (
9
, 1  

so as to obtain a system of seven equations each of degree six 
i.e. : � 6 
∑ 
�;
��� ����	 � ���	       (3)     
∑ 
���

,,;
��, ��	 � ���, �, � ,	      (4)  

 

 

Let us arbitrarily set 8 � �

$
 then collocating (4) at ���6 , 7 � 0,

�

9
, �
$
, (
9
, 1 and interpolating (3) at ���6 , 7 � 0,

�

$
  lead to system of 

equations of the form; 
�� � 2
$ & 
(�6�� � 18	 & 
9�12��$ � 96�� & 144	 & 
<�20��( � 300��$ & 1800�� & 1800	

& 
;�30�9 � 720��( & 5400��$ � 14400�� & 10800	 
����/9 � 2
$ & 
(A6����/9 � 18B & 
9A12����/9

$ � 96����/9 & 144B & 
<A20����/9
( � 300����/9

$ & 1800����/9 & 1800B
& 
;A30���/9

9 � 720����/9
( & 5400����/9

$ � 14400����/9 & 10800B 
����/$ � 2
$ & 
(A6����/$ � 18B & 
9A12����/$

$ � 96����/$ & 144B & 
<A20����/$
( � 300����/$

$ & 1800����/$ & 1800B
& 
;A30���/$

9 � 720����/$
( & 5400����/$

$ � 14400����/$ & 10800B 
���(/9 � 2
$ & 
(A6���(/9 � 18B & 
9A12���(/9

$ � 96���(/9 & 144B & 
<A20���(/9
( � 300���(/9

$ & 1800���(/9 & 1800B
& 
;A30��(/9

9 � 720���(/9
( & 5400���(/9

$ � 14400���(/9 & 10800B 
���� � 2
$ & 
(�6���� � 18	 & 
9�12����$ � 96���� & 144	 & 
<�20����( � 300����$ & 1800���� & 1800	

& 
;�30���9 � 720����( & 5400����$ � 14400���� & 10800	 
�� � 
, & 
���� � 1	 & 
$���$ � 4�� & 2	 & 
(���( � 9��$ & 18�� � 6	 & 
9���9 � 16��( & 72��$ � 96�� � 24	

& 
<���< � 25��9 & 300��( � 900��$ & 600�� � 120	
& 
;���; � 36��< & 450��9 � 2400��( & 5400��$ � 4320�� & 720	 
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����/$ = 
, + 
�A����/$ − 1B + 
$A����/$$ − 4����/$ + 2B + 
(A����/$( − 9����/$$ + 18����/$ − 6B+ 
9A����/$9 − 16����/$( + 72����/$$ − 96����/$ − 24B+ 
<A����/$< − 25����/$9 + 300����/$( − 900����/$$ + 600����/$ − 120B+ 
;A����/$; − 36����/$< + 450����/$9 − 2400����/$( + 5400����/$$ − 4320����/$ + 720B 
 
We solve the system of seven equations by MAPLE to obtain the value of the unknown parameters 
� , C = 0�1	6. 
 Substituting 
�′E into (2) yields a continuous implicit hybrid one-step method in the form: ���	 = F,��	�� + F!G��	���!G + ℎ$[∑ H���	���� + H!I��	���, ���!I + H!G��	���!G + HJI��	���JI]      (5) 

Where F���	
1K H���	are continuous coefficient ���� = ���� + Cℎ	 is the numerical approximation of the analytical solution 
at����
1K ���� = ������ , ���� , ����, ). 

Equation (5) yields the F� and H� as the following continuous function of t: 

F� = −1,   F�/$ = 2,   H�/9 = LG
�<,    H�/$ = �(LG

�$, ,H(/9 = LG
�<, H� = LG

$9,       (6) 

Evaluating (5) at ����, the main method is obtained as: 

���� + �� − 2����/$ = LG
$9, M�� + 16���!I + 26���!G + 16���JI + ����N      (7)    

      
To derive the block method, additional equations are needed since equation (7) alone will not be sufficient for the solution. The 
additional methods can be obtained by evaluating the first derivative of equation (5):  

����	 = �
L MF,, ��	�� + F!G

, ��	���!GN + ℎ�∑ H�����, ��	���� + H!I
���	���!I + H!G

���	���!G + HJI
���	���JI	        (8)                                                                   

at ���6 , 7 = 0, �
9 , �

$ , (
9 , 1 respectively, This yields the following discrete derivative schemes: 720ℎ��� + 1440�� − 1440����/$ = ℎ$[−53�� − 144���!I + 30���!G − 16���JI + 3����]        (9) 

2880ℎ����/9� + 5760�� − 5760����/$ = ℎ$[39�� + 70���!I − 144���!G + 42���JI − 7����] (10) 

720ℎ����/$� + 1440�� − 1440����/$ = ℎ$[5�� + 104���!I + 78���!G − 8���JI + ����]       (11) 

2880ℎ���(/9� + 5760�� − 5760����/$ = ℎ$[31�� + 342���!I + 768���!G + 314���JI − 15����] (12) 

720ℎ����� + 1440�� − 1440����/$ = ℎ$[3�� + 112���!I + 126���!G + 240���JI + 59����] (13) 

Equations (7), (9), (10), (11), (12) and (13) are solved simultaneously to obtain the following explicit results: 

���� = �� + ℎ��� + LG
O, M7�� + 24���!I + 6���!G + 8���JIN    (14)  

����/$ = �� + �
$ ℎ��� + LG

�99, M53�� + 144���!I − 30���!G + 16���JI  − 3���� N (15) 

����� = ��� + L
O, M7�� + 32���!I + 12���!G + 32���JI + 7���� N   (16) 

����/$� = ��� + L
(;, M29�� + 124���!I + 24���!G + 4���JI − ���� N   (17) 

����/9� = ��� + L
$PP, M251�� + 646���!I − 264���!G + 106���JI − 19���� N  (18) 

���(/9� = ��� + L
($, M27�� + 102���!I + 72���!G + 42���JI − 3���� N   (19) 

 
Analysis of the method 
The basic properties of the derived Scheme are discussed. 
The Explicit Scheme (14-19) derived are discrete Scheme belonging to the class of LMM of the form ∑ F����� = ℎ$ ∑ H��������,���,       (20) 
The Linear differential operator L defined by �[���	; ℎ] = ∑ [F���� + Cℎ	 − ℎ$H����� + Cℎ	]���,     (21) 
Expanding (21) by Taylor series, we have  �[���	; ℎ] = Q,���	 + Q�ℎ����	 + ⋯ + QRℎR�R��	 
where Q, = F, + F� + F$ + ⋯ + F� Q� = F� + 2F$ + ⋯ + :F� 

Q$ = 12! �F� + 2$F$ + ⋯ + :$F�	 − �H, + H� + H$ + ⋯ + H� 

. 

. 

. 

QT = 1U! �F� + 2TF$ + ⋯ + :TF�	 − 1�V − 2	! �H� + 2T"$H$ + ⋯ + :R"$H�	,  
V ≥ 3 
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Order and error constant 
Definition 1: The LMM (20) is said to be order P if  Q, =Q� = Q$ = ⋯ = QT = QT�� = 0  and QT�$ ≠ 0 is the error 
constant. 
 
Table 1: Showing the Orders and Error Constants of the 
methods 
Equation numbers Order (P) Error constants 

(14) 5 3.10019841 x 10-6 

(15) 5 2.46484953 x 10-6 

(16) 5 3.52371964 x 10-6 

(17) 5 1.55009921 x 10-6 

(18) 5 1.77052330 x 10-6 

(19) 5 2.71267361 x10-6 

 
Consistency 
Definition 2: The LMM (20) is said to be consistent if it is of 
order P≥ 1 and its first and second characteristic polynomial 
defined as Y��	 = ∑ F������, and Z��	 = ∑ H������,  where Z 

satisfies �7	 ∑ F� = 0, �77	Y��1	 = 0, �777	���, Y���1	 =2! Z�1	, See Lambart (1973). 

The discrete Schemes derived are all of order than one and 
satisfy the condition (i)-(iii) 
Zero Stability of the block method 
The block method is defined by Fatunla (1988) as 

�[ = \ ]6
�

6�,
+ ℎ \ 6̂

�

6�,
_["6 

`ℎ�a� �[ = [��, ����, ���$, … , ���b"�]T 

_[ = [�� , ����, ���$, … , ���b"�]T ]6�E and 6̂�E are chosen r x r matrix coefficient and c =0,1,2 … represents the block number, 1 = ca, the first step 
number in the m-th block and r is the proposed block size. 
The block method is said to be zero stable if the roots of d� , C = 1�1	: of the first characteristics polynomial is  

Y�d	 = det h\ ]6d�"�
�

6�,
i = 0, ], = j  

 satisfies |Rj|≤ 1, if one of the roots is +1, then the root is 
called Principal Root of Y�d	. 
 

 
 
 
Zero-stability for schemes  
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The first characteristics polynomial of the scheme is Y�k	 = det [k], − ]�] 

Y�k	 = K�l
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k(�k − 1	 = 0 k� = k$ = k( = 0 ma k9 = 1 
 
We can see clearly that no root has modulus greater than one (i.e. k6 ≤ 1) ⍱7. The hybrid block method is zero stable. 
 
Numerical experiment ��� − �� = 0,           ��0	 = 0, ���0	 = −1,   ℎ = 0.1 
Exact Solution:���	 = 1 − exp��	 
 
Table 2: The exact solution and the computed results from the proposed method two for problem 1 

x Exact Solution New Method Yahaya 2009 Error in New method Error in Yahaya 2009 
0.1 -0.105170918 -0.1051709181 -0.105170902 9.999999E-11 0.160756E-07 
0.2 -0.221402758 -0.2214027582 -0.221402723 0.245218E-09 0.351602E-07 
0.3 -0.349858807 -0.3498588077 -0.34985857 0.734286E-09 0.237576E-06 
0.4 -0.491824697 -0.4918246978 -0.491824433 0.835326E-09 0.2646413E-06 
0.5 -0.64872127 -0.6487212709 -0.648720974 0.945324E-09 0.2967001E-06 
0.6 -0.82211880 -0.8221188007 -0.822118466 0.734287E-09 0.3343905E-06 
0.7 -1.013752707 -1.013752708 -1.013752329 0.193453E-08 0.3784705E-06 
0.8 -1.225540928 -1.225540929 -1.225540498 0.156723E-08 0.4304925E-06 
0.9 -1.459603111 -1.459603112 -1.45960262 0.165782E-08 0.4911569E-06 
1.0 -1.718281828 -1.718281830 -1.718281267 0.224176E-08 0.561459E-06 

 
 
Conclusion 
In this paper, it is observed from the table that the result 
obtained from the method converged faster when the numbers 
of off-step points were increased. This validates the 
consistency and zero stability of the methods. Generally, the 
performance of our method as noticed in Table 2 shows that 
the proposed method is more superior to the block methods 
proposed by Yahaya. 
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